# sample1d¶

Resample 1-D table data using splines

## Synopsis¶

**gmt sample1d** [ *table* ]
[ **-A**[**f**|**p**|**m**|**r**|**R**][**+d**][**+l**] ]
[ **-E** ]
[ **-F****l**|**a**|**c**|**n**|**s***p*[**+d1**|**2**] ]
[ **-N***col* ]
[ **-T**[*min/max*/]*inc*[**+a**][**+i**|**n**][**+u**] ]
[ **-V**[*level*] ]
[ **-W***col* ]
[ **-b**binary ]
[ **-d**nodata[**+c***col*] ]
[ **-e**regexp ]
[ **-f**flags ]
[ **-g**gaps ]
[ **-h**headers ]
[ **-i**flags ]
[ **-j**flags ]
[ **-o**flags ]
[ **-q**flags ]
[ **-s**flags ]
[ **-w**flags ]
[ **-:**[**i**|**o**] ]
[ **--PAR**=*value* ]

**Note:** No space is allowed between the option flag and the associated arguments.

## Description¶

**sample1d** reads a multi-column ASCII [or binary] data set from file
[or standard input] and interpolates the time-series or spatial profile at locations
where the user needs the values. The user must provide the column number
of the independent (monotonically increasing **or** decreasing)
variable, here called *time* (it may of course be any type of quantity) when that is not the first column in data set.
Equidistant or arbitrary sampling can be selected. All columns
are resampled based on the new sampling interval. Several interpolation
schemes are available, in addition to a *smoothing* spline which trades off misfit
for curvature. Extrapolation outside the range of the input data
is not supported.

## Required Arguments¶

*table*This is one or more ASCII [of binary, see

**-bi**] files with one column containing the independent*time*variable (which must be monotonically in/de-creasing) and any number of optional columns holding other data values. If no file is provided,**sample1d**reads from standard input.

## Optional Arguments¶

**-A**[**f**|**p**|**m**|**r**|**R**][**+d**][**+l**]For track resampling (if

**-T**…*unit*is set) we can select how this is to be performed. Append**f**to keep original points, but add intermediate points if needed; note this selection does not necessarily yield equidistant points [Default],**m**as**f**, but first follow meridian (along y) then parallel (along x),**p**as**f**, but first follow parallel (along y) then meridian (along x),**r**to resample at equidistant locations; input points are not necessarily included in the output, and**R**as**r**, but adjust given spacing to fit the track length exactly. Finally, append**+d**to delete duplicate input records (identified by having no change in the time column, and**+l**if distances should be measured along rhumb lines (loxodromes).**Note**: Calculation mode for loxodromes is spherical, hence**-je**cannot be used in combination with**+l**.

**-E**If the input dataset contains records with trailing text then we will attempt to add these to output records that exactly match the input times. Output records that have no matching input record times will have no trailing text appended [Default ignores trailing text].

**-Fl**|**a**|**c**|**n**|**s***p*[**+d1**|**2**]Choose from

**l**(Linear),**a**(Akima spline),**c**(natural cubic spline),**n**(no interpolation: nearest point), or**s**(smoothing cubic spline; append fit parameter*p*) [Default is**-Fa**]. You may change the default interpolant; see GMT_INTERPOLANT in your gmt.conf file. You may optionally evaluate the first or second derivative of the spline by appending**+d1**or**+d2**, respectively.

**-N***col*Sets the column number of the independent

*time*variable [Default is 0 (first)].

**-T**[*min/max*/]*inc*[**+a**][**+i**|**n**][**+u**]Make evenly spaced time-steps from

*min*to*max*by*inc*[Default uses input times]. For details on array creation, see Generate 1D Array.**Note**: For resampling of spatial (*x,y*or*lon,lat*) series you must give an increment with a valid distance unit; see Units for map units or use**c**if plain Cartesian coordinates. The first two columns must contain the spatial coordinates. From these we calculate distances in the chosen units and interpolate using this parametric series.

**-V**[*level*]Select verbosity level [

**w**]. (See full description) (See cookbook information).

**-W***col*Sets the column number of the weights to be used with a smoothing cubic spline. Requires

**-Fs**.

**-bi***record*[**+b**|**l**] (more …)Select native binary format for primary table input. [Default is 2 (or at least the number of columns implied by

**-T**)].

**-bo***record*[**+b**|**l**] (more …)Select native binary format for table output. [Default is same as input].

**-d**[**i**|**o**][**+c***col*]*nodata*(more …)Replace input columns that equal

*nodata*with NaN and do the reverse on output.

**-e**[**~**]*“pattern”*|**-e**[**~**]/*regexp*/[**i**] (more …)Only accept data records that match the given pattern.

**-f**[**i**|**o**]*colinfo*(more …)Specify data types of input and/or output columns.

**-g****x**|**y**|**z**|**d**|**X**|**Y**|**D***gap*[**u**][**+a**][**+c***col*][**+n**|**p**] (more …)Determine data gaps and line breaks.

**-h**[**i**|**o**][*n*][**+c**][**+d**][**+m***segheader*][**+r***remark*][**+t***title*] (more …)Skip or produce header record(s).

**-i***cols*[**+l**][**+d***divisor*][**+s***scale*|**d**|**k**][**+o***offset*][,*…*][,**t**[*word*]] (more …)Select input columns and transformations (0 is first column,

**t**is trailing text, append*word*to read one word only).

**-je**|**f**|**g**(more …)Determine how spherical distances are calculated.

**-o***cols*[,…][,**t**[*word*]] (more …)Select output columns (0 is first column;

**t**is trailing text, append*word*to write one word only).

**-q**[**i**|**o**][~]*rows*|*limits*[**+c***col*][**+a**|**t**|**s**] (more …)Select input or output rows or data limit(s) [all].

**-wy**|**a**|**w**|**d**|**h**|**m**|**s**|**c***period*[/*phase*][**+c***col*] (more …)Convert an input coordinate to a cyclical coordinate.

**-s**[*cols*][**+a**][**+r**] (more …)Set handling of NaN records for output.

**-^**or just**-**Print a short message about the syntax of the command, then exit (

**Note**: on Windows just use**-**).**-+**or just**+**Print an extensive usage (help) message, including the explanation of any module-specific option (but not the GMT common options), then exit.

**-?**or no argumentsPrint a complete usage (help) message, including the explanation of all options, then exit.

**--PAR**=*value*Temporarily override a GMT default setting; repeatable. See gmt.conf for parameters.

## Units¶

For map distance unit, append *unit* **d** for arc degree, **m** for arc
minute, and **s** for arc second, or **e** for meter [Default unless stated otherwise], **f**
for foot, **k** for km, **M** for statute mile, **n** for nautical mile,
and **u** for US survey foot. By default we compute such distances using
a spherical approximation with great circles (**-jg**) using the authalic radius
(see PROJ_MEAN_RADIUS). You can use **-jf** to perform
“Flat Earth” calculations (quicker but less accurate) or **-je** to perform
exact geodesic calculations (slower but more accurate; see
PROJ_GEODESIC for method used).

## ASCII Format Precision¶

The ASCII output formats of numerical data are controlled by parameters
in your gmt.conf file. Longitude and latitude are formatted
according to FORMAT_GEO_OUT, absolute time is
under the control of FORMAT_DATE_OUT and
FORMAT_CLOCK_OUT, whereas general floating point values are formatted
according to FORMAT_FLOAT_OUT. Be aware that the format in effect
can lead to loss of precision in ASCII output, which can lead to various
problems downstream. If you find the output is not written with enough
precision, consider switching to binary output (**-bo** if available) or
specify more decimals using the FORMAT_FLOAT_OUT setting.

## Generate 1D Array¶

We will demonstrate the use of options for creating 1-D arrays via gmtmath.
Make an evenly spaced coordinate array from *min* to *max* in steps of *inc*, e.g.,:

```
gmt math -o0 -T3.1/4.2/0.1 T =
3.1
3.2
3.3
3.4
3.5
3.6
3.7
```

Append **+b** if we should take log2 of *min* and *max*, get their nearest integers,
build an equidistant log2-array using *inc* integer increments in log2, then undo
the log2 conversion. E.g., **-T**3/20/1**+b** will produce this sequence:

```
gmt math -o0 -T3/20/1+b T =
4
8
16
```

Append **+l** if we should take log10 of *min* and *max* and build an
array where *inc* can be 1 (every magnitude), 2, (1, 2, 5 times magnitude) or 3
(1-9 times magnitude). E.g., **-T**7/135/2**+l** will produce this sequence:

```
gmt math -o0 -T7/135/2+l T =
10
20
50
100
```

For output values less frequently than every magnitude, use a negative integer *inc*:

```
gmt math -o0 -T1e-4/1e4/-2+l T =
0.0001
0.01
1
100
10000
```

Append **+i** if *inc* is a fractional number and it is cleaner to give its reciprocal
value instead. To set up times for a 24-frames per second animation lasting 1 minute, run:

```
gmt math -o0 -T0/60/24+i T =
0
0.0416666666667
0.0833333333333
0.125
0.166666666667
...
```

Append **+n** if *inc* is meant to indicate the *number* of equidistant coordinates
instead. To have exactly 5 equidistant values from 3.44 and 7.82, run:

```
gmt math -o0 -T3.44/7.82/5+n T =
3.44
4.535
5.63
6.725
7.82
```

Alternatively, let *inc* be a *file* with output coordinates in the first column,
or provide a comma-separated *list* of specific coordinates, such as the first 6
Fibonacci numbers:

```
gmt math -o0 -T0,1,1,2,3,5 T =
0
1
1
2
3
5
```

**Note**: Should you need to ensure that the coordinates are unique and sorted (in case the
*file* or *list* are not sorted or have duplicates) then supply the **+u** modifier.

If you only want a *single* value
then you must append a comma to distinguish the list from the setting of an increment.

If the module allows you to set up an absolute time series, append a valid time unit from the list
**y**ear, m**o**nth, **d**ay, **h**our, **m**inute, and **s**econd
to the given increment; add **+t** to ensure time column (or use **-f**). **Note**: The internal time
unit is still controlled independently by TIME_UNIT. The first 7 days of March 2020:

```
gmt math -o0 -T2020-03-01T/2020-03-07T/1d T =
2020-03-01T00:00:00
2020-03-02T00:00:00
2020-03-03T00:00:00
2020-03-04T00:00:00
2020-03-05T00:00:00
2020-03-06T00:00:00
2020-03-07T00:00:00
```

A few modules allow for **+a** which will paste the coordinate array to the output table.

Likewise, if the module allows you to set up a spatial distance series (with distances computed
from the first two data columns), specify a new increment as *inc* with a geospatial distance unit from the list
**d**egree (arc), **m**inute (arc), **s**econd (arc), m**e**ter, **f**oot, **k**ilometer,
**M**iles (statute), **n**autical miles, or s**u**rvey foot; see **-j** for calculation mode.
To interpolate Cartesian distances instead, you must use the special unit **c**.

Finally, if you are only providing an increment and will obtain *min* and *max* from the data, then it is
possible (*max* - *min*)/*inc* is not an integer, as required. If so, then *inc* will be adjusted to fit the range.
Alternatively, append **+e** to keep *inc* exact and adjust *max* instead (keeping *min* fixed).

## Notes¶

The smoothing spline *s(t)* requires a fit parameter *p* that allows for the trade-off between an
exact interpolation (fitting the data exactly; large *p*) to minimizing curvature (*p* approaching 0).
Specifically, we seek to minimize

where the misfit is evaluated as

and the curvature is given by the integral over the domain of the second derivative of the spline

Trial and error may be needed to select a suitable *p*.

## Examples¶

**Note**: Below are some examples of valid syntax for this module.
The examples that use remote files (file names starting with `@`

)
can be cut and pasted into your terminal for testing.
Other commands requiring input files are just dummy examples of the types
of uses that are common but cannot be run verbatim as written.

To resample the file profiles.tdgmb, which contains (time,distance,gravity,magnetics,bathymetry) records, at 1 km equidistant intervals using Akima’s spline, use:

```
gmt sample1d profiles.tdgmb -N1 -Fa -T1 > profiles_equi_d.tdgmb
```

To resample the file depths.dt at positions listed in the file grav_pos.dg, using a cubic spline for the interpolation, use:

```
gmt sample1d depths.txt -Tgrav_pos.dg -Fc > new_depths.txt
```

To resample the file points.txt every 0.01 from 0-6, using a cubic spline for the interpolation, but output the first derivative instead (the slope), try:

```
gmt sample1d points.txt -T0/6/0.01 -Fc+d1 > slopes.txt
```

To resample the file track.txt which contains lon, lat, depth every 2 nautical miles, use:

```
gmt sample1d track.txt -T2n -AR > new_track.txt
```

To do approximately the same, but make sure the original points are included, use:

```
gmt sample1d track.txt -T2n -Af > new_track.txt
```

To obtain a rhumb line (loxodrome) sampled every 5 km instead, use:

```
gmt sample1d track.txt -T5k -AR+l > new_track.txt
```

To sample temperatures.txt every month from 2000 to 2018, use:

```
gmt sample1d temperatures.txt -T2000T/2018T/1o > monthly_temp.txt
```

To use a smoothing spline on a topographic profile for a given fit parameter, try:

```
gmt sample1d @topo_crossection.txt -T300/500/0.1 -Fs0.001 > smooth.txt
```