filter1d

Time domain filtering of 1-D data tables

Synopsis

gmt filter1d [ table ] -Ftype<width>[modifier] [ -Dincrement ] [ -E ] [ -Llack_width ] [ -Nt_col ] [ -Qq_factor ] [ -Ssymmetry_factor ] [ -T[min/max/]inc[+e|+a|n] | -Tfile|list ] [ -V[level] ] [ -bbinary ] [ -dnodata ] [ -eregexp ] [ -fflags ] [ -ggaps ] [ -hheaders ] [ -iflags ] [ -jflags ] [ -oflags ] [ -:[i|o] ] [ --PAR=value ]

Note: No space is allowed between the option flag and the associated arguments.

Description

filter1d is a general time domain filter for multiple column time series data. The user specifies which column is the time (i.e., the independent variable). (See -N option below). The fastest operation occurs when the input time series are equally spaced and have no gaps or outliers and the special options are not needed. filter1d has options -L, -Q, and -S for unevenly sampled data with gaps. For spatial series there is an option to compute along-track distances and use that as the independent variable for filtering.

Required Arguments

-Ftypewidth[modifier]

Sets the filter type. Choose among convolution and non-convolution filters. Append the filter code followed by the full filter width in same units as time column. By default we perform low-pass filtering; append +h to select high-pass filtering. Some filters allow for optional arguments and a modifier. Available convolution filter types are:

(b) Boxcar: All weights are equal.

(c) Cosine Arch: Weights follow a cosine arch curve.

(g) Gaussian: Weights are given by the Gaussian function.

(f) Custom: Instead of width give name of a one-column file with your own weight coefficients.

Non-convolution filter types are:

(m) Median: Returns median value.

(p) Maximum likelihood probability (a mode estimator): Return modal value. If more than one mode is found we return their average value. Append +l or +u if you rather want to return the lowermost or uppermost of the modal values.

(l) Lower: Return the minimum of all values.

(L) Lower: Return minimum of all positive values only.

(u) Upper: Return maximum of all values.

(U) Upper: Return maximum or all negative values only.

Upper case type B, C, G, M, P, F will use robust filter versions: i.e., replace outliers (2.5 L1 scale off median, using 1.4826 * median absolute deviation [MAD]) with median during filtering.

In the case of L|U it is possible that no data passes the initial sign test; in that case the filter will return 0.0.

Optional Arguments

table
One or more ASCII (or binary, see -bi[ncols][type]) data table file(s) holding a number of data columns. If no tables are given then we read from standard input.
-Dincrement
increment is used when series is NOT equidistantly sampled. Then increment will be the abscissae resolution, i.e., all abscissae will be rounded off to a multiple of increment. Alternatively, resample data with sample1d.
-E
Include Ends of time series in output. Default loses half the filter-width of data at each end.
-Llack_width
Checks for Lack of data condition. If input data has a gap exceeding width then no output will be given at that point [Default does not check Lack].
-Nt_col
Indicates which column contains the independent variable (time). The left-most column is # 0, the right-most is # (n_cols - 1). [Default is 0].
-Qq_factor
Assess Quality of output value by checking mean weight in convolution. Enter q_factor between 0 and 1. If mean weight < q_factor, output is suppressed at this point [Default does not check Quality].
-Ssymmetry_factor
Checks symmetry of data about window center. Enter a factor between 0 and 1. If ( (abs(n_left - n_right)) / (n_left + n_right) ) > factor, then no output will be given at this point [Default does not check Symmetry].
-T[min/max/]inc[+e|+a|n] | -Tfile|list
Make evenly spaced time-steps from min to max by inc [Default uses input times]. For details on array creation, see Generate 1D Array.
-V[level] (more …)
Select verbosity level [c].
-bi[ncols][t] (more …)
Select native binary format for primary input.
-bo[ncols][type] (more …)
Select native binary output. [Default is same as input].
-d[i|o]nodata (more …)
Replace input columns that equal nodata with NaN and do the reverse on output.
-e[~]”pattern” | -e[~]/regexp/[i] (more …)
Only accept data records that match the given pattern.
-f[i|o]colinfo (more …)
Specify data types of input and/or output columns.
-g[a]x|y|d|X|Y|D|[col]zgap[u][+n|p] (more …)
Determine data gaps and line breaks.
-h[i|o][n][+c][+d][+rremark][+rtitle] (more …)
Skip or produce header record(s).
-icols[+l][+sscale][+ooffset][,][,t[word]] (more …)
Select input columns and transformations (0 is first column, t is trailing text, append word to read one word only).
-je|f|g (more …)
Determine how spherical distances are calculated.
-ocols[,…][t[word]] (more …)
Select output columns (0 is first column; t is trailing text, append word to write one word only).
-:[i|o] (more …)
Swap 1st and 2nd column on input and/or output.
-^ or just -
Print a short message about the syntax of the command, then exits (NOTE: on Windows just use -).
-+ or just +
Print an extensive usage (help) message, including the explanation of any module-specific option (but not the GMT common options), then exits.
-? or no arguments
Print a complete usage (help) message, including the explanation of all options, then exits.
--PAR=value
Temporarily override a GMT default setting; repeatable. See gmt.conf for parameters.

Units

For map distance unit, append unit d for arc degree, m for arc minute, and s for arc second, or e for meter [Default], f for foot, k for km, M for statute mile, n for nautical mile, and u for US survey foot. By default we compute such distances using a spherical approximation with great circles (-jg) using the authalic radius (see PROJ_MEAN_RADIUS). You can use -jf to perform “Flat Earth” calculations (quicker but less accurate) or -je to perform exact geodesic calculations (slower but more accurate; see PROJ_GEODESIC for method used).

ASCII Format Precision

The ASCII output formats of numerical data are controlled by parameters in your gmt.conf file. Longitude and latitude are formatted according to FORMAT_GEO_OUT, absolute time is under the control of FORMAT_DATE_OUT and FORMAT_CLOCK_OUT, whereas general floating point values are formatted according to FORMAT_FLOAT_OUT. Be aware that the format in effect can lead to loss of precision in ASCII output, which can lead to various problems downstream. If you find the output is not written with enough precision, consider switching to binary output (-bo if available) or specify more decimals using the FORMAT_FLOAT_OUT setting.

Generate 1D Array

Make an evenly spaced coordinate array from min to max in steps of inc. Append +b if we should take log2 of min and max and build an equidistant log2-array using inc integer increments in log2. Append +l if we should take log10 of min and max and build an array where inc can be 1 (every magnitude), 2, (1, 2, 5 times magnitude) or 3 (1-9 times magnitude). For less than every magnitude, use a negative integer inc. Append +n if inc is meant to indicate the number of equidistant coordinates instead. Alternatively, give a file with output coordinates in the first column, or provide a comma-separated list of coordinates. If you only want a single value then you must append a comma to distinguish the list from the setting of inc.

If the module allows you to set up an absolute time series, append a valid time unit from the list year, month, week, day, hour, minute, and second to the given increment; add +t to ensure time column (or use -f) Note: The internal time unit is still controlled independently by TIME_UNIT. Some modules allow for +a which will paste the coordinate array to the output table.

Likewise, if the module allows you to set up a spatial distance series (with distance computed from the first two data columns), specify the increment as inc[unit] with a geospatial distance unit from the list degree (arc), minute (arc), second (arc), meter, foot, kilometer, Miles (statute), nautical miles, or survey foot; see -j for calculation mode. For Cartesian distances, you must use the special unit c.

Finally, if you are only providing an increment and obtain min and max from the data, then it is possible (max - min)/inc is not an integer, as required. If so then inc will be adjusted to accordingly. Alternatively, append +e to keep inc exact and adjust max instead.

Examples

Note: Below are some examples of valid syntax for this module. The examples that use remote files (file names starting with @) can be cut and pasted into your terminal for testing. Other commands requiring input files are just dummy examples of the types of uses that are common but cannot be run verbatim as written.

To filter the remote CO2 data set in the file MaunaLoa_CO2.txt (year, CO2) with a 5 year Gaussian filter, try

gmt filter1d @MaunaLoa_CO2.txt -Fg5 > CO2_trend.txt

Data along track often have uneven sampling and gaps which we do not want to interpolate using sample1d. To find the median depth in a 50 km window every 25 km along the track of cruise v3312, stored in v3312.dt, checking for gaps of 10km and asymmetry of 0.3:

gmt filter1d v3312.dt -FM50 -T0/100000/25 -L10 -S0.3 > v3312_filt.dt

To smooth a noisy geospatial track using a Gaussian filter of full-width 100 km and not shorten the track, and add the distances to the file, use

gmt filter1d track.txt -Tk+a -E -Fg200 > smooth_track.txt

See Also

gmt , sample1d , splitxyz